Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Phys Condens Matter ; 36(14)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157553

RESUMO

The alkaline electrolyzer (AEL) is a promising device for green hydrogen production. However, their energy conversion efficiency is currently limited by the low performance of the electrocatalysts for the hydrogen evolution reaction (HER). As such, the electrocatalyst design for the high-performance HER becomes essential for the advancement of AELs. In this work, we used both hydrogen (H) and hydroxyl (OH) adsorption Gibbs free energy changes as the descriptors to investigate the catalytic HER performance of 1T' transition metal dichalcogenides (TMDs) in an alkaline solution. Our results reveal that the pristine sulfides showed better alkaline HER performance than their selenide counterparts. However, the activities of all pristine 1T' TMDs are too low to dissociate water. To improve the performance of these materials, defect engineering techniques were used to design TMD-based electrocatalysts for effective HER activity. Our density functional theory results demonstrate that introducing single S/Se vacancy defects can improve the reactivities of TMD materials. Yet, the desorption of OH becomes the rate-determining step. Doping defective MoS2with late 3d transition metal (TM) atoms, especially Cu, Ni, and Co, can regulate the reactivity of active sites for optimal OH desorption. As a result, the TM-doped defective 1T' MoS2can significantly enhance the alkaline HER performance. These findings highlight the potential of defect engineering technologies for the design of TMD-based alkaline HER electrocatalysts.

3.
Phys Chem Chem Phys ; 23(4): 2649-2657, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480923

RESUMO

The stepped surfaces in nanoscale zero-valent iron (nZVI) play an essential role for environmental application. However, there is still currently a deficiency in the atomic understanding of stepped surface properties due to the limitation of the computational methodology. In this study, stepped Fe(210) and (211) surfaces were theoretically investigated using density functional theory (DFT) computations in terms of the flat Fe(110) surface. Our results suggest that the consideration of van der Waals (vdW) interaction correction is beneficial for the DFT study on Fe-based systems. The DF-cx method is found to be the most promising vdW correction method. The DF-cx results reveal that the stepped Fe(210) and Fe(211) surfaces experience significant surface relaxation and abnormal trends in their work function. Their electronic properties and reactivities of the surface atoms are strongly affected by the Fe coordination numbers and the strong adsorption strengths of oxygen on the surfaces are dependent on both the coordination number of the adsorbed atoms and the geometry of the adsorption sites.

4.
Phys Chem Chem Phys ; 22(35): 19718-19724, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32840552

RESUMO

Halide perovskite solar cells have demonstrated high power conversion efficiency. Compositional engineering and surface passivation technologies have been drawing great attention to enhance their energy conversion efficiency and moisture resistance. In this study, the density functional theory method was employed to understand the effects of compositional engineering at the A site of perovskites and the 3-butenoic acid-based passivation layer on the structural, electronic and optical properties of halide perovskites. Our results suggest that the electronic and optical properties of CsPbI3 can be tuned by the mixing of caesium and FA cations. Moreover, the calculation of adsorption energies on mixed-cation Cs1-xFAxPbI3(001) surfaces reveals that the much stronger adsorption strength of 3-butenoic acid facilitates blocking of the interaction of surfaces with water molecules. Meanwhile, the calculated results indicate that adopting such an organic molecule as a passivation layer does not compromise their excellent electronic and optical properties. Our theoretical understanding of the A cation engineering and organic molecule-based surface passivation will be beneficial to the improvement of the overall performance of perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...